If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+x(1+x)=280
We move all terms to the left:
10x^2+x(1+x)-(280)=0
We add all the numbers together, and all the variables
10x^2+x(x+1)-280=0
We multiply parentheses
10x^2+x^2+x-280=0
We add all the numbers together, and all the variables
11x^2+x-280=0
a = 11; b = 1; c = -280;
Δ = b2-4ac
Δ = 12-4·11·(-280)
Δ = 12321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12321}=111$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-111}{2*11}=\frac{-112}{22} =-5+1/11 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+111}{2*11}=\frac{110}{22} =5 $
| 2x+80=7x+5 | | 2y+3+y=3(y+2)-3 | | 2x+80=7x+5+ | | 2y+3+y=3(y+3)-3 | | 10=3y+3y | | -2v-39=9(v+3) | | 2(w+2)=5w+7 | | 3y+6+4y-y=-8 | | 4b−10−4b=4b+10 | | 5=2q-q | | 5+x-6x+2x=9 | | -6d=-6−3d | | 15=4d+d | | -4+6f=1+5f | | ∠A=6x−18∘∠B=14x+38∘ | | (x-24)=(2x+30)=180 | | 2y=5-4 | | 222=264-u | | -4j−10=-10j | | 8x^2-30x+30=0 | | -4j−10=-10j+8 | | -w+58=287 | | 5(x-4)+2x=7(x+2)-34 | | 7x^2+11x-18=0 | | 4+w=2w | | 7v+23=2(v-1) | | 7c+5=4c-10 | | 8x+8-9x=2-x-15 | | -v+163=81 | | x12=14 | | x-27+x+54=180 | | 3x-10=2(4x-5 |